

Future Challenges Facing SEE Pulsed Laser Technique

Stephen Buchner,

QSS Group Inc/NASA GSFC

Dale McMorrow,

Naval Research Laboratory

What is the Basic Mechanism Behind Single Event Effects?

CHARGE INJECTION

Charge Injection by Ion Beam

Charge Injection

by Pulsed Focused

Charge Injection

by Pulsed Focused

Charge Injection

by Pulsed Focused

 $d = 2.44\lambda f$

- Light must be able to reach sensitive nodes
 - Metal layers and packaging
- Light must be able to create free carriers
 - Materials and structures

Preferences

- Sensitive node must be "visible"
 - Scaling
- Amount of absorbed light must be measurable
 - Quantifiable

Future Challenges

Metallization

- Metallization
- Packaging

Future Challenges

- Metallization
- Packaging
- Scaling

- Metallization
- Packaging
- Scaling

Future Challenges

- Metallization
- Packaging
- Scaling

Plastic Transistor

Exotic Materials

Quantum Dots

Single Molecule Transistor

- Metallization
- Packaging
- Scaling
- Exotic Material
- Novel Structures

Future Challenges

- Metallization
- Packaging
- Scaling
- Exotic Material
- Novel Structures
- Equipment

\$\$ for LasersLarge Optical Table

Current State of Technique

Major US Sponsor: DTRA

5 Facilities

European Aeronautic MBDA (England) **Defense & Space Company (France)** NRL (USA) Aerospace (USA)

> Presented by S. Buchner at SEE Symposium, Long Beach, CA April 11th, 2006

IXL (France)

Pulsed Laser Can Produce ...

- Single Event Transient (SET)
- Single Event Upset (SEU)
- Single Event Latchup (SEL)
- Single Event Snapback (SES)
- Dose Rate (γ-dot)

Pulsed Laser Not Practical for....

- Single Event Gate Rupture
- Single Event Burnout in Power MOSFETs

Presented by S. Buchner at SEE Symposium, Long Beach, CA April 11th, 2006

Presented by S. Buchner at SEE Symposium, Long Beach, CA April 11th, 2006 V. Pouget, IXL, France

Temporal Information

Very High LET

LET >> 100 MeV.cm²/mg Limited by material damage

Ion LET Threshold from Laser Energy Threshold?

- · No metal.
- Large structures.

V. Pouget, IXL, France

Two Photon Absorption (TPA)

Presented by S. Buchner at SEE Symposium, Long Beach, CA April 11th, 2006

Gate Length = 0.1 μm

Presented by S. Buchner at SEE Symposium, Long Beach, CA April 11th, 2006

Scaling

Aperture Limits
Pulse Energy

XRAYS

Exotic Materials

Adjust the wavelength to ensure absorption.

1. Laser

2. Stage

3. Focusing Optics

- < 100 ps pulse width
- Single shot to 100 MHz
- Pulse Energy = 8 pJ
- Multiple wavelengths

Not sufficient intensity for TPA

- Challenges for the pulsed laser:
 - Metal
 - Package
 - Scaling
 - Exotic materials
 - Novel devices
 - Equipment